IITians at your home
ISO 9001:2008 Certified
India's No. 1 Online Academy
 
Contact our Toll Free Nos
  • India Toll Free : 1-800-3070-0017
  • Bahrain (National) : 973-16198627
  • Indonesia Toll Free : 1-803-015-204-5864
  • Singapore (National) : 65-31586005
  • USA/Canada Toll Free : 1-888-442-3128
  • Others : +91-9899713975
 
operations_kei
09718199348
Contact Us More
Conformations of Monosubstituted Cyclohexanes

Unlike cyclohexane, which has two equivalent chair conformers, the two chair conformers of a monosubstituted cyclohexane such as methylcyclohexane are not equivalent. The methyl substituent is in an equatorial position in one conformer and in an axial position in the other (Figure 2.11), because substituents that are equatorial in one chair conformer are axial in the other (Figure 2.8).
methyl group positions

Figure 2.11 A substituent is in an equatorial position in one chair conformer and in an axial position in the other. The conformer with the substituent in the equatorial position is more stable.

The chair conformer with the methyl substituent in an equatorial position is the more stable conformer because a substituent has more room and, therefore, fewer steric interactions when it is in an equatorial position. This can be best understood by examining Figure 2.12, which shows that when the methyl group is in an equatorial position, it is anti to the C-3 and C-5 carbons. Therefore, the substituent extends into space, away from the rest of the molecule.
In contrast, when the methyl group is in an axial position, it is gauche to the C-3 and C-5 carbons (Figure 2.13). As a result, there are unfavorable steric interactions between the axial methyl group and both the axial substituent on C-3 and the axial substituent on C-5 (in this case, hydrogens). In other words, the three axial bonds on the same side of the ring are parallel to each other, so any axial substituent will be relatively close to the axial substituents on the other two carbons. Because the interacting substituents are on 1,3-positions relative to each other, these unfavorable steric interactions are called 1,3-diaxial interactions. If you take a few minutes to build models, you will see that a substituent has more room if it is in an quatorial position than if it is in an axial position.
“Build a model of methylcyclohexane, and convert it from one chair conformer to the other.”

equatorial substituent
Figure 2.12 An equatorial substituent on the C-1 carbon is anti to the C-3 and C-5 carbons.

axial substituent
Figure 2.13 An axial substituent on the C-1 carbon is gauche to the C-3 and C-5 carbons.

1,3-diaxial interactions

The gauche conformer of butane and the axial-substituted conformer of methylcyclohexane are compared in Figure 2.14. Notice that the gauche interaction is the same in both—an interaction between a methyl group and a hydrogen bonded to a carbon gauche to the methyl group. Butane has one such gauche interaction and methylcyclohexane has two.
steric strain of gauche butane

Figure 2.14 The steric strain of gauche butane is the same as the steric strain between an axial methyl group and one of its axial hydrogens. Butane has one gauche interaction between a methyl group and a hydrogen; methylcyclohexane has two.

In Section 2.10, we saw that the gauche interaction between the methyl groups of butane caused the gauche conformer to be 0.9 kcal mol (3.8 kJ mol) less stable than the anti conformer. Because there are two such gauche interactions in the chair conformer of methylcyclohexane when the methyl group is in an axial position, this chair conformer is 1.8 kcal mol (7.5 kJ mol) less stable than the chair conformer with the methyl group in the equatorial position. Because of the difference in stability of the two chair conformers, at any one time more monosubstituted cyclohexane molecules will be in the chair conformer with the substituent in the equatorial position than in the chair conformer with the substituent in the axial position. The relative amounts of the two chair conformers depend on the substituent (Table 2.10). The substituent with the greater bulk in the area of the 1,3- diaxial hydrogens will have a greater preference for the equatorial position because it will have stronger 1,3-diaxial interactions. For example, the equilibrium constant (Keq) for the conformers of methylcyclohexane indicates that 95% of methylcyclohexane molecules have the methyl group in the equatorial position at 25 °C:
equilibrium constant for the conformers of methylcyclohexane
“The larger the substituent on a cyclohexane ring, the more the equatorialsubstituted conformer will be favored.”
equillibrium constants for cyclohexanes

In the case of tert-butylcyclohexane, where the 1,3-diaxial interactions are even more destabilizing because a tert-butyl group is larger than a methyl group, more than 99.9% of the molecules have the tert-butyl group in the equatorial position.


Do you like this Topic?
Share it on
       
       
  • Online Classroom Program

    • IITians @ Your Home, Attend Classes directly from Home
    • Two way interaction between Teacher and Students
    • Zero Travel Time or Cost involved, No Hidden Charges
    • Small Batch Sizes, Maximum of 8-10 Students
    • Golden Opportunity to be trained by IITians and NITians
    • All you need is a Computer / Laptop & Internet Connection
    Try Free Demo Class IIT JEE Online Classes
  • 1 on 1 Online Class

    • IITians @ your Home for 1 on 1 Class
    • Two way Communication between Teacher and Student
    • Special Doubt Removal & Problem solving Sessions
    • Customize the Course as per your desire - Duration, Timing, Faculty etc
    • All faculties are IITians and NITians
    • All you need is a Computer / Laptop & Internet Connection
    Try Free Demo Class IIT JEE 1 on 1 Online Classes
  • Correspondence Course Details

    • 600 Hours of Recorded Lectures by IITians and NITians
    • Best Study Material comprising all Concepts and Tricks
    • 10000+ Solved Question Bank + 250 Hours of Video Solutions
    • Complete NCERT solutions + 150 Hours of NCERT Video Solutions
    • Last 30 years JEE chapterwise video solutions
    • 100% Original Material prepared by JEE Experts
    Register for Free Now IIT JEE Correspondence Courses
  • AITS for JEE Main and JEE Advanced

    Register for Free Now JEE Test Series
X

Welcome to Kshitij Education India

Our Guarantee:

We're so sure you'll have the time of your life with us, we back our courses with a 100% Satisfaction Guarantee.

If for any reason you aren't 100% satisfied with your classes in first 7 days, just let us know and we'll refund your fees. No questions asked.

And based on your feedback, we will take the necessary steps to ensure we never repeat any mistakes as such.

Live Chat