Magnetic force acting on a current-carrying conductor | Magnetism
(For IIT-JEE Preparation)
IITians at your home
ISO 9001:2008 Certified
India's No. 1 Online Academy
Contact: +91-9555288846
Magnetic force acting on a current-carrying conductor

If a magnetic force is exerted on a single charged particle when the particle moves through a magnetic field, it should not surprise you that a current-carrying wire also experiences a force when placed in a magnetic field. This follows from the fact that the current is a collection of many charged particles in motion; hence, the resultant force exerted by the field on the wire is the vector sum of the individual forces exerted on all the charged particles making up the current. The force exerted on the particles is transmitted to the wire when the particles collide with the atoms making up the wire.

To indicate the direction of B in illustrations, we sometimes present perspective views, such as those in Figures 29.5, 29.6a, and 29.7. In flat illustrations, such as in Figure 29.6b to d, we depict a magnetic field directed into the page with blue crosses, which represent the tails of arrows shot perpendicularly and away from you. In this case, we call the field Bin, where the subscript “in” indicates “into the page.” If B is perpendicular and directed out of the page, we use a series of blue dots, which represent the tips of arrows coming toward you (see Fig. P29.56). In this case, we call the field Bout. If B lies in the plane of the page, we use a series of blue field lines with arrowheads, as shown in Figure 29.8. magnetic force acting on a current-carrying conductor One can demonstrate the magnetic force acting on a current-carrying conductor by hanging a wire between the poles of a magnet, as shown in Figure 29.6a. For ease in visualization, part of the horseshoe magnet in part (a) is removed to show the end face of the south pole in parts (b), (c), and (d) of Figure 29.6. The magnetic field is directed into the page and covers the region within the shaded circles. When the current in the wire is zero, the wire remains vertical, as shown in Figure 29.6b. However, when a current directed upward flows in the wire, as shown in Figure 29.6c, the wire deflects to the left. If we reverse the current, as shown in Figure 29.6d, the wire deflects to the right. magnetic force exerted on each charge Let us quantify this discussion by considering a straight segment of wire of length L and cross-sectional area A, carrying a current I in a uniform magnetic field B, as shown in Figure 29.7. The magnetic force exerted on a charge q moving with a drift velocity vd is qvd x B. To find the total force acting on the wire, we multiply the force qvd x B exerted on one charge by the number of charges in the segment. Because the volume of the segment is AL, the number of charges in the segment is nAL, where n is the number of charges per unit volume. Hence, the total magnetic force on the wire of length L is total magnetic force on wire We can write this expression in a more convenient form by noting that, from Equation 27.4, the current in the wire is I = nqvdA. Therefore, total magnetic force on current-carrying conductor where L is a vector that points in the direction of the current I and has a magnitude equal to the length L of the segment. Note that this expression applies only to a straight segment of wire in a uniform magnetic field. magnetic force direction on current-carrying conductor Now let us consider an arbitrarily shaped wire segment of uniform cross-section in a magnetic field, as shown in Figure 29.8. It follows from Equation 29.3 that the magnetic force exerted on a small segment of vector length ds in the presence of a field B is magnetic force exerted on a small segment where dFB is directed out of the page for the directions assumed in Figure 29.8. We can consider Equation 29.4 as an alternative definition of B. That is, we can define the magnetic field B in terms of a measurable force exerted on a current element, where the force is a maximum when B is perpendicular to the element and zero when B is parallel to the element.
To calculate the total force FB acting on the wire shown in Figure 29.8, we integrate Equation 29.4 over the length of the wire: total force acting on current-carrying conductor where a and b represent the end points of the wire. When this integration is carried out, the magnitude of the magnetic field and the direction the field makes with the vector ds (in other words, with the orientation of the element) may differ at different points.

Now let us consider two special cases involving Equation 29.5. In both cases, the magnetic field is taken to be constant in magnitude and direction.
Case 1 A curved wire carries a current I and is located in a uniform magnetic field B, as shown in Figure 29.9a. Because the field is uniform, we can take B outside the integral in Equation 29.5, and we obtain magnetic force acting on current-carrying conductor in uniform magnetic field net magnetic force on the loop But the quantity ∫ba ds represents the vector sum of all the length elements from a to b. From the law of vector addition, the sum equals the vector L', directed from a to b. Therefore, Equation 29.6 reduces to magnetic force acting in uniform field Case 2 An arbitrarily shaped closed loop carrying a current I is placed in a uniform magnetic field, as shown in Figure 29.9b. We can again express the force acting on the loop in the form of Equation 29.6, but this time we must take the vector sum of the length elements ds over the entire loop: magnetic force exerted in uniform field Because the set of length elements forms a closed polygon, the vector sum must be zero. This follows from the graphical procedure for adding vectors by the polygon method. Because ∮ds = 0, we conclude that FB = 0:
“The net magnetic force acting on any closed current loop in a uniform magnetic field is zero”.

magnetic force on a semicircular conductor The four wires shown in Figure 29.11 all carry the same current from point A to point B through the same magnetic field. Rank the wires according to the magnitude of the magnetic force exerted on them, from greatest to least. magnetic force on a wire

Do you like this Topic?
Share it on

IIT JEE Physics Study Material

Skip Navigation Links.
Collapse PhysicsPhysics
Collapse MechanicsMechanics
Expand Physics and MeasurementPhysics and Measurement
Expand Motion in One DimensionMotion in One Dimension
Expand VectorsVectors
Expand Motion in Two DimensionsMotion in Two Dimensions
Expand The Laws of MotionThe Laws of Motion
Expand Circular Motion and Other Applications of Newton’s LawsCircular Motion and Other Applications of Newton’s Laws
Expand Work and Kinetic EnergyWork and Kinetic Energy
Expand Potential Energy and Conservation of EnergyPotential Energy and Conservation of Energy
Expand Linear Momentum and CollisionsLinear Momentum and Collisions
Expand Rotation of a Rigid Object About a Fixed AxisRotation of a Rigid Object About a Fixed Axis
Expand Rolling Motion and Angular MomentumRolling Motion and Angular Momentum
Expand Static Equilibrium and ElasticityStatic Equilibrium and Elasticity
Expand Oscillatory MotionOscillatory Motion
Expand The Law of GravityThe Law of Gravity
Expand Fluid MechanicsFluid Mechanics
Collapse WaveWave
Collapse Thermal PhysicsThermal Physics
Collapse ElectrostaticsElectrostatics
Collapse Current ElectricityCurrent Electricity
Collapse MagnetismMagnetism
Collapse Alternating Current circuitsAlternating Current circuits
Collapse OpticsOptics

Free IIT JEE Study Material

  • Online Classroom Program

    • IITians @ Your Home, Attend Classes directly from Home
    • Two way interaction between Teacher and Students
    • Zero Travel Time or Cost involved, No Hidden Charges
    • Small Batch Sizes, Maximum of 12-15 Students
    • Golden Opportunity to be trained by IITians and NITians
    • All you need is a Computer / Laptop & Internet Connection
    Try Free Demo Class IIT JEE Online Classes
  • 1 on 1 Online Class

    • IITians @ your Home for 1 on 1 Class
    • Two way Communication between Teacher and Student
    • Special Doubt Removal & Problem solving Sessions
    • Customize the Course as per your desire - Duration, Timing, Faculty etc
    • All faculties are IITians and NITians
    • All you need is a Computer / Laptop & Internet Connection
    Try Free Demo Class IIT JEE 1 on 1 Online Classes
  • Correspondence Course Details

    • 600 Hours of Recorded Lectures by IITians and NITians
    • Best Study Material comprising all Concepts and Tricks
    • 10000+ Solved Question Bank + 250 Hours of Video Solutions
    • Complete NCERT solutions + 150 Hours of NCERT Video Solutions
    • Last 30 years JEE chapterwise video solutions
    • 100% Original Material prepared by JEE Experts
    Register for Free Now IIT JEE Correspondence Courses
  • AITS for JEE Main and JEE Advanced

    Register for Free Now JEE Test Series
Welcome to Kshitij Education India

Kshitij Education India as an organisation is immensely grateful to society at large and has made efforts to contribute to the Indian Education system. The free study material section of our website can be deemed as a treasure of resources sufficient for an aspirant to clear JEE Mains. Kshitij provides past year solutions of IIT, AIEEE, JEE Mains and Advanced in its free study material section. Our faculty members put in best efforts to explain each and every question in the best possible manner. Online IIT JEE Free Study Material section also features a collection of over 10,000 pages of study resources covering the entire IIT JEE curriculum. Our discussion forum stimulates a student intellectually with over 5000 threads of IIT discussion topics.

Please enter the Email Id and Contact number of the person to whom you would like to refer

Welcome to Kshitij Education India
Our Guarantee:
  1. We're so sure you'll have the time of your life with us, we back our courses with a 100% Satisfaction Guarantee.
  2. If for any reason you aren't 100% satisfied with your classes in first 7 days, just let us know and we'll refund your fees. No questions asked.*
  3. And based on your feedback, we will take the necessary steps to ensure we never repeat any mistakes as such.

* It is mandatory to attend first 7 days of live classes and than if you found any valid reason to step back you can request us for refund.

Live Chat